
Benchmarking Multi-Robot Coordination in Realistic, Unstructured

Human-Shared Environments

Lukas Heuer1, Luigi Palmieri2, Anna Mannucci2, Sven Koenig3 and Martin Magnusson1

Abstract— Coordinating a fleet of robots in unstructured,
human-shared environments is challenging. Human behavior
is hard to predict, and its uncertainty impacts the performance
of the robotic fleet. Various multi-robot planning and coordi-
nation algorithms have been proposed, including Multi-Agent
Path Finding (MAPF) methods to precedence-based algorithms.
However, it is still unclear how human presence impacts dif-
ferent coordination strategies in both simulated environments
and the real world. With the goal of studying and further
improving multi-robot planning capabilities in those settings,
we propose a method to develop and benchmark different
multi-robot coordination algorithms in realistic, unstructured
and human-shared environments. To this end, we introduce
a multi-robot benchmark framework that is based on state-
of-the-art open-source navigation and simulation frameworks
and can use different types of robots, environments and
human motion models. We show a possible application of the
benchmark framework with two different environments and
three centralized coordination methods (two MAPF algorithms
and a loosely-coupled coordination method based on precedence
constraints). We evaluate each environment for different human
densities to investigate its impact on each coordination method.
We also present preliminary results that show how informing
each coordination method about human presence can help the
coordination method to find faster paths for the robots.

I. INTRODUCTION

Multi-robot systems have many potential applications.

Currently, the biggest application is warehouse automation,

where the storing or sorting of many different objects is

enabled by large multi-robot systems [1]. However, there

are applications and environments where multi-robot systems

are not yet common. Examples include airports, hospitals,

restaurants or loading docks in logistics [2]–[4]. Such en-

vironments pose two major challenges when employing

multiple robots. First, they do not always have a fixed

and simple structure. Semi-static obstacles and non-regular

corridors or intersections can make it harder employ efficient

coordination algorithms. Second, they are often not devoid

of humans. This demands the fleet decision-making system

to account for the delays of individual robots that can occur

when interacting with humans.

1L. Heuer, and M. Magnusson are with the Center for Ap-
plied Autonomous Sensor Systems (AASS), Örebro University, Sweden
{lukas.heuer, martin.magnusson}@oru.se.

2L. Palmieri and A. Mannucci are with Robert Bosch GmbH,
Corporate Research, Stuttgart, Germany {luigi.palmieri,
anna.mannucci}@de.bosch.com.

3S. Koenig is with the Department of Computer Science, Univer-
sity of Southern California, Los Angeles, United States of America
skoenig@usc.edu.

This work was partly supported by the EU Horizon 2020 research and
innovation program under grant agreement No. 101017274 (DARKO) and
NSF grant 1837779.

Fig. 1: The depot environment, which we use in our framework
to test different multi-robot planning algorithms. We focus our
attention on realistic, human-shared environments.

The literature on autonomous navigation consists of

two main branches: single-robot navigation and multi-robot

coordination/path-planning. Single-robot navigation [5]–[8]

usually accounts for the robot dynamics and can navigate in

cluttered dynamic environments, but may lead to deadlocks

or suboptimal behavior when applied to complex multi-

robot settings (such as fleets of robots with non-trivial

kinematics, limited space for maneuvering, etc.). Multi-robot

coordination/path-planning investigates the explicit coordina-

tion of robots. It requires a certain level of communication

between the robots and optimizes joint metrics, such as the

total makespan or the total distance traveled [1], [9], [10].

However, to keep the problem tractable for hundreds of

robots, those approaches are often developed and evaluated

in strongly simplified settings without considering robot

dynamics, uncertainty or complex environments [11], [12].

Thus, each research direction usually simplifies or disre-

gards the problem that the other one is trying to solve.

Understanding how to effectively couple the two branches

of autonomous navigation is the problem which motivates

this paper.

In particular, coordinating multi-robot systems in unstruc-

tured human-shared environments introduces challenges.

Such environments are difficult to simplify because of the

inherent complexity of human behavior and the way humans

can interact with a robot. The local navigation system of the

robots determines how they interact with the surrounding

environment, including humans and other robots. But to

what extent this influences the coordination of the multi-

robot fleet is unclear as different coordination methods make

different assumptions or simplifications. Thus, the local robot

behaviors can impact each coordination method differently.

Schäfer et al. [13] proposed a benchmark to investigate

multi-robot coordination in realistic simulations. However,

to the best of our knowledge, there is no research on multi-

robot coordination focusing on the challenges introduced by



the presence of humans in unstructured environments.

With this work, we provide an important initial stepping

stone to understanding how human behavior can influence

multi-robot coordination. To this end, we make the following

contributions:

1) A modular benchmarking framework based on state-

of-the-art physics simulator, robot-navigation stack

and multi-robot coordination algorithms tailored to-

wards human-shared spaces. The framework allows

researchers and practitioners to easily implement and

compare different methods for robot navigation and

multi-robot coordination.

2) Experimental results which show how different estab-

lished algorithms for multi-robot coordination perform

in, and are impacted by, unstructured, human-shared

environments.

II. RELATED WORK

Recently, more methods for multi-robot coordination aim

at explicitly dealing with delays in the execution of the robot

paths. Hönig et al. [10] and Varambally et al. [11] identify

a similar research gap as we have introduced in Section I.

Both use the concept of Action Dependency Graphs (ADG)

to make the execution of the solution to a Multi-Agent

Path Finding (MAPF) problem more robust to delays and

slow-downs. However, both papers consider only simple

warehouses, do not include a local navigation stack in the

simulation framework, nor consider human-shared environ-

ments. Cirillo, Pecora and Mannucci et al. published a line

of work [12], [14], [15] which investigates realistic multi-

robot coordination in unstructured environments. Similarly,

Draganjac et al. [3] propose a traffic system for autonomous

forklifts. These methods utilize the robots full navigation

stack and is tested in physics-simulated environments as

well as with real-world experiments, but do not address the

topics of sharing the operational environment with humans.

A method which shows how multi-robot coordination can

be adapted to unstructured environments is proposed by Čáp

et al. [9], [16]. Though, they also do not consider realistic

robot dynamics and their work is not aimed at human-

shared environments. Chen et al. propose a decentralized

coordination method in [17] and Zhu et al. [18] introduce an

approach for multi-robot motion planning while accounting

for human interactions. However, both methods focus only

on the decentralized coordination and path planning, and are

evaluated in completely empty environments. Talebpour et

al. [19] present a method for multi-robot coordination in

human-shared spaces. They combine the local robot naviga-

tion stack with a task-allocation-based coordination method.

Differently from our work, they do not present an open

framework nor consider different methods for multi-robot

coordination.

Sturtevant et al. [20] provide an established benchmark for

MAPF algorithms. In Schäfer et al. [13], we aim to close the

gap between realistic simulation and benchmarking MAPF

algorithms. While the benchmark includes Navigation21 as

a local navigation stack (and hence allows different path

1https://navigation.ros.org

Fig. 2: A sketch of our designed REMROC framework. The arrows
represent information, communicated via ROS 2 messages. This
information can be anything, required for coordination (e.g. state-,
path-, or sensor-information).

planners and controllers), it is rigid with respect to the type

of coordination methods used and does not investigate the

effects of the human presence.

We conclude that there exists no related work that focuses

on how to directly compare different types of multi-robot

coordination methods like MAPF-based solutions [1], [9],

free-space coordination based on precedence constraints [12],

or market-based coordination methods [21]. The work on co-

ordination in human-shared environments is also very limited

and there are no studies about how traditional coordination

methods are effected by them.

III. FRAMEWORK

In this section, we detail REMROC: a framework for

benchmarking realistic multi-robot coordination algorithms

in unstructured, human-shared environments. (Figure 2 illus-

trates the overall design of the framework.) We use ROS 2

Humble [22] as the software basis for the general robotic

system, and Gazebo Ignition [23] as physics simulator for

the environments. For navigating each individual robot, we

use Navigation2 [24], a ROS 2 software library containing

state-of-the-art components for robot navigation. The use

of open-source state-of-the-art software components aims

at promoting the framework as a general open-source en-

vironment for benchmarking multi-robot systems. Also, it

eases the development of algorithms for real-world appli-

cation and transferring them to real robotic platforms. The

framework is available open source at https://github.

com/boschresearch/remroc.

A. Simulation

The general environment including obstacles and robot

descriptions are imported into Gazebo via SDF files. Gazebo

offers the functionality of adding simulated humans to its

environment, also known as actors. Actors are also specified

in the SDF file and require trajectory information (i.e.,

allowing the reproduction of real-world datasets like THÖR

[25]). Importantly, actors in our Gazebo simulations have

a texture but no collision box. In other words, humans are

registered by sensors like lidars and cameras and therefore

influence the navigation stack of the robot realistically, but

are not physically interacted with. We make this choice

because physically interacting humans would require them

to use some form of navigation stack themselves in order

to react to the robots. Otherwise it could easily happen that



a human influences the simulation very unrealistically, for

example by walking into a robot continuously. Providing the

simulated humans with a navigation stack on their own would

greatly increase the complexity of the simulation to the extent

where it would not be feasible to simulate more then a few

humans.

It is generally possible to add different types of robots,

with different models, sensors, and motion dynamics, and

even create multi-robot systems composed of multiple types.

The robot we have implemented for our evaluation is us-

ing the open source model of a medium size delivery

robot [26]. We made modifications to equip the model with

a differential-drive motion model, a 3D lidar and an IMU

sensor.

B. Navigation

Each robot is launched in its individual ROS 2 name-space

with a full Navigation2 stack, which consists of multiple

components. For state-estimation and localization we employ

an Extended Kalman Filter (EKF) [27] and an Adaptive

Monte Carlo Localization (AMCL) [28]. We use Model

Predictive Path Integral (MPPI) [29] and Hybrid-A* [30] for

local control and global planning respectively. The robots

also run an instance of the Navigation2 behavior-tree to

expose ROS 2 action servers for general functionality, like

point navigation or path following.

C. Planning and Coordination

The Multi-Robot Planning Algorithm (MRPA) unit (see

Figure 2) uses the received information to coordinate, and

ultimately instructs the individual robots on how to move

forward. It is implemented as a ROS 2 node and connected

to the robots through ROS 2 interfaces (i.e. topics, ser-

vices, actions). Our framework can also realize hybrid or

decentralized coordination methods by launching multiple

coordination nodes which only connect to individual, or a

subset of robots.

Importantly, this overall setup is computational demand-

ing, as each robot simulates sensors and runs an individual

Navigation2 stack. In our evaluation, run experiments with

up to 8 robots and 20 humans maintaining a 60% real-time

factor for the Gazebo simulation. We plan to address this

in future work by running the simulation and navigation

systems distributed on multiple machines.

IV. COORDINATION ALGORITHMS

Thanks to its modularity, REMROC allows for easy inte-

gration of different coordination algorithms. As an initial set,

we have chosen established approaches to coordination [12],

[31], [32], included them into our framework, and bench-

marked them in unstructured, human-shared environments.

Many approaches for multi-agent coordination represent

the coordination task as a MAPF problem and employ

a MAPF solver to obtain a solution [31]. We adopt this

strategy and use Conflict Based Search (CBS) [32] in two

of our evaluated algorithms. For this, we adapt the CBS

implementation from libMultiRobotPlanning [33] to use in a

ROS 2 node.

Algorithms 1, 2 and 3 describe the coordination algo-

rithms we include in our benchmark framework. We made

straightforward additions and modifications to [32] and [12],

to enable their use in REMROC. R,S,G denote the sets of all

robots, their start and goal positions, respectively. P refers

to the set of all robot paths. Lower case letters represent the

elements of the respective set. Limitations of the algorithms

are discussed in Sections VI-A.1, VI-A.2 and VI-A.3.

We refer to Algorithm 1 as One-shot CBS. The start

and goal locations of the robots are used to generate a

MAPF problem on the respective navigation graph, and

solve it using the CBS algorithm. Translating the nodes of

the navigation graph into map coordinates, we convert the

solution of the CBS algorithm into a set of waypoints along

which the robot has to navigate. Importantly, the obtained

paths are only collision free and optimal with respect to

the navigation graph, if the robots move synchronously.

To enforce this, the robots only receive their next target

waypoint when all of them have reached their current target

respectively. We use the /navigate to pose service, provided

by Navigation2, to set the target waypoint.

We refer to Algorithm 2 as Iterative CBS. This algorithm

is practically CBS with replanning at a set interval, similar to

Method 2 in [1]. The perfect synchronization assumption of

the classic CBS algorithm is difficult to meet due to dynamic

constraints of the robots, networking issues and interactions

with humans delaying individual robots. This algorithm tries

to account for these disturbances to the original MAPF solu-

tion by generating and solving the MAPF problem iteratively.

The positions of the robots are updated and a MAPF problem

is generated on the respective navigation graph, using the

robots goal states and their current positions. The MAPF

problem is then solved using the CBS algorithm. We consider

the resulting paths as a sequence of waypoints, which we give

to the robot, to navigate along. This is done by calling the

/navigate through poses action, provided by the Navigation2

stack.

We refer to Algorithm 3 as Continuous PBC (Priority

Based Coordination. This algorithm is inspired by the one

proposed in [12] and [34]. The algorithm first queries the

global planner from each robot to plan a path. The original

paths are saved and used as bases for the following iterative

part of the algorithm. First we receive the current state of

each robot. Second we calculate a critical point, that is, the

first point on the remaining path closer then a given critical

distance to the path of another robot. We then truncate the

original path to the subpath between the current robot state

and the critical point on which the robot does not have prece-

dence. Finally, we call the /follow path action, provided by

Navigation2 to make the robot follow its respective subpath.

This algorithm requires a heuristic to assign precedence to a

robot at a critical point. We consider the robot with less path

distance to the critical point to have priority. If the robot’s

current position is too close to another path, its distance to

a critical point is 0 and it therefore always has priority.

V. EVALUATION

The REMROC framework, described in Section III, is used

to evaluate different multi-robot coordination algorithms in



Algorithm 1 One-shot CBS

Require: R,S,G ▷ robots, robot start positions, robot goal
positions

1: P← CBS(S,G)
2: while ROBOTSNOTATGOAL(R) do
3: for r ∈ R do
4: NAVIGATETOWAYPOINT(r,pr[0])
5: end for
6: if ROBOTSATWAYPOINT(R) then
7: for r ∈ R do
8: REMOVEELEMENT(pr[0])
9: end for

10: end if
11: end while

Algorithm 2 Iterative CBS

Require: R,S,G ▷ robots, robot start positions, robot goal
positions

1: while ROBOTSNOTATGOAL(R) do
2: X ← UPDATEROBOTPOSITIONS(R)
3: P← CBS(X ,G)
4: if ALLPATHSVALID(R) then
5: for r ∈ R do
6: NAVIGATEALONGWAYPOINTS(r,pr)
7: end for
8: else
9: STOPROBOTS(R)

10: end if
11: end while

Algorithm 3 Continuous PBS

Require: R,S,G ▷ robots, robot start position, robot goal
positions

1: for r ∈ R do
2: pr← GLOBALPLANNER(sr,gr)
3: end for
4: while ROBOTSNOTATGOAL(R) do
5: X ← UPDATEROBOTPOSITIONS(R)
6: for r ∈ R do
7: cr← FINDCRITICALPOINT(pr,P\pr)
8: p̃r← FINDRELEVANTSUBPATH(xr,cr,pr)
9: FOLLOWPATH(r, p̃r)

10: end for
11: end while

unstructured, human-shared environments. We evaluate three

algorithms in two different environments, detailed in Section

IV and Section V-A respectively.

The framework provides the possibility to record many

different information like the odometry of the robots, ex-

ecution frequencies of the individual components or direct

sensor data, and to define metrics of interest. Our goal is to

derive general insights on how the presence of the humans

affects the performance of the different algorithms. Thus, we

collect the individual time-to-goal of the robots and present

the results in Section VI. We obtain legible trajectories for

the humans by using the Hybrid A* planner from Navi-

gation2. To avoid biases caused by a specific selection of

human paths, we generate n samples with randomized human

trajectories for each experiment.

For the two CBS-based algorithms, we use the navigation

graphs in Figure 4 and 5 to represent the environments.

Fig. 3: The basic environment used to test different multi-robot
planning algorithms with up to 10 humans.

A. Simulation Environments

We evaluate the coordination algorithms in two different

environments, each with 8 robots navigating to their given

goal position. Start and goal positions are fixed for each

environment as shown in Figures 4 and 6 and chosen so

as to result in a well-formed infrastructure as described in

[9], [34]. The first simulation environment, called basic, is

an empty room of 10 × 10 m2. Start and goal positions

for the robots and the navigation graph are shown in Figure

4 and chosen so as to provoke a congested area in the

center of the room. Due to the lack of static obstacles, the

main disturbance on the robots coordination is caused by the

presence of humans.

The second environment, called depot, is based on the

Turtlebot 4 Gazebo simulator [35] and measures 30 × 15 m2.

Figures 5 and 6 show the navigation graph and occupancy

map including the start and goal positions of robots. Blue

areas in Figure 6 mark shelves; these have enough ground

clearance for robots to pass beneath but not for humans.

This is an interesting feature because it results in an area

with a higher average human density (marked in red). This

environment contains obstacles and features making it more

realistic than the basic one. The size of the environment

eases the coordination problem, but the increased complexity

challenges the local navigation stack of the robots.

B. Experiments

In our experiments we investigate how the different algo-

rithms, described in Section IV, perform when coordinating

several robots in human-shared environments. For this we

look at the environments presented in Section V-A in three

settings, each having a different number of humans present.

We conduct experiments in the basic environment, with

0, 5 and 10 humans, and a sample size of n = 20. The

experiment in the depot environment is done with 0, 10

and 20 humans, and a sample size of n = 10. In a last

experiment, we only consider the 10 samples of the depot

environment with 20 humans, and modify the navigation

graph by truncating nodes which are in the region with high

human density. We compare the normal environment setup

to one where the crowded (e.g. busy) area, marked red in

Figure 6, is blocked. This means that the area is treated as

occupied for the coordination methods and the navigation

stacks, resulting in paths which do not pass through this

area. The local planner always performs collision avoidance

considering both humans and static obstacles.



Fig. 4: (Left:) The navigation graph used by MAPF based coordi-
nation algorithms for the basic environment. (Right:)Start and goal
locations for the robots, marked with yellow and green respectively.

Fig. 5: The inflated occupancy map of the depot environment. The
navigation graph used by MAPF based coordination algorithms is
shown in blue. Red nodes are used in the normal evaluation, but
are removed in the last experiment.

Fig. 6: Occupancy map for the depot environment. The shelves,
marked in blue, prevent humans from passing. The red busy
area accumulates a lot of human traffic and is blocked for robot
navigation in our last experiment. Start and goal locations for the
robots are marked with yellow and green respectively.

VI. RESULTS

Results for the basic environment are reported in Table I

and Figure 7. Table I shows mean and standard deviation of

the time-to-goal over the 20 samples and all robots during

the respective experiments. Figure 7 reports results for each

robot over the 20 samples. Importantly, the results from each

sample are sorted, so the 8 markers show the time-to-goal for

the robots from fastest to slowest. Table II and Figure 8 show

results of the depot environment. Table II shows mean and

standard deviation of the time-to-goal over the 10 samples

and all robots during the respective experiments. Figure 8

displays the results for the individual robots. For the third

experiment, we inform the algorithms about the area with an

No. humans One-shot CBS Iterative CBS Continuous PBC

0 31.7±3.64 29.9±6.73 23.7±5.17
5 39.4±5.00 33.8±7.53 27.1±6.91
10 47.7±6.58 35.2±8.46 29.4±8.31

TABLE I: Average time-to-goal in seconds for the basic environ-
ment.

No. humans One-shot CBS Iterative CBS Continuous PBC

0 110.9±10.61 65.1±7.99 60.2±10.32
10 120.0±10.81 68.1±8.36 63.0±11.3
20 127.9±13.74 70.4±9.10 65.0±11.6

20 (BB∗) 118.6±10.90 69.5±8.82 64.4±11.7

TABLE II: Average time-to-goal in seconds for the depot environ-
ment. ∗BB: Busy blocked

higher average in human density (by changing the navigation

graph) and show the results in Figure 9.

A. Discussion

The results show that the presence of humans during fleet

coordination, and considering them only in local collision

avoidance, has a negative impact on the time-to-goal of the

robots. Figure 7 and 8 as well as Table I and II show

this clearly for both environments. The results also show

the advantage of algorithms which continuously update their

solutions. Table I and II show that, the iterative methods,

Iterative CBS and Continuous PBC, are not impacted as

much by the presence of humans, with the increase in time-

to-goal not being as large as for One-shot CBS. Figure 8

shows that there is an increase in spread from the fastest

to the slowest robot, and that the robots are generally

delayed by adding more humans. The larger size of the depot

environment is also important when evaluating the results.

The longer distances could make delays less noticeable and

give the iterative coordination methods more opportunities

to recover from delays. Figure 8 shows that the fastest robot

are not slowed down when increasing the number of humans.

This is most likely because the coordination algorithm is able

to leverage the delay of some robots into more direct and

therefore faster paths for others.

Avoiding crowded areas in MRPA: Table II and Figure 9

show that the performance of coordination methods can be

improved slightly by making the robots avoid the area with

highest human density. For One-shot CBS, this speeds up

the robots, while for the iterative coordination methods the

improvements are marginal. However, intuitively it should

be more difficult for the robots to coordinate, as the nav-

igation graph and the environment are restricted. It seems

plausible that the added challenge of coordinating in a more

restricted environment, is compensated by a reduction in

human interaction. Continuous PBC is generally less effected

by human presence. This is most likely due to the fact that

the method can plan continuous and straight paths to the

goal states without being bound by the connected grid. From

qualitative evaluation of our experiment, we observe that this

coordination method is more likely to plan diagonally below

the shelves, which results in less interactions with humans.

The different algorithms have individual drawbacks and

limitations which we discuss in the following.

1) One-shot CBS: In the depot environment, this approach

is notably slower then the other ones. We theorize that this is



Fig. 7: Mean and standard deviation of time-to-goal in seconds for all robots in the basic experiment.

Fig. 8: Mean and standard deviation of time-to-goal in seconds for
all robots in the depot environment.

Fig. 9: Mean and standard deviation of time-to-goal in seconds
for all robots in the depot environment with 20 humans. We also
evaluate a modified version of the environment, in which we block
the busy area of the map for the navigation and multi-robot path
planning methods.

because it can not follow straight paths as efficiently as the

other approaches, which is relevant in the larger environment.

The dense navigation graph causes a stop and go behavior.

This is due to the robot never fully accelerating, as it is

always presented with a close goal. These drawbacks may

be mitigated with more complex CBS-bases algorithm as

proposed by Varambally et al. [11]. In addition, this method

is not able to account for delays of individual robots and

adapt the MAPF solution accordingly. However, it is still

very robust. Long computation time or poor navigation per-

formance will never cause deadlocks or undesirable behavior.

This is because Alg. 1, lines 6–8, enforces synchronous

execution of the MAPF solution. Thus, it only slows all

robots down, and increase their respective time-to-goal.

2) Iterative CBS: While this algorithm works well in our

experiments it has a notable limitation. The solving time

per iteration should be low enough such that the robot will

not pass more then one graph node during it. Otherwise the

algorithm will not obtain valid paths and stop the robots until

it has solved the MAPF iteration. While this was no problem

in our experiments, using more robots or more difficult

environment would increase the computational complexity

and the time needed to obtain a solution to the MAPF

problem. The exact influence of this phenomenon depends

directly on the MAPF solver used. A sub-optimal solver like

ECBS [36] or M* [37] could enable this algorithm for larger

maps, robot fleets or more constrained navigation graphs.

3) Continuous PBC: This algorithm is able to plan in con-

tinuous space without a navigation graph, which improves its

performance over the CBS based algorithms. However, it also

generates the global paths with a single-agent motion plan-

ner and therefore generates sub-optimal multi-agent motion

plans. The algorithm is also not minimizing total time-to-

goal, because of the heuristic used to compute precedence.

This makes it possible to improve the overall performance

of the entire system by delaying a robot. The small impact

in overall time-to-goal that humans have on this algorithm

in the depot environment could be explained by this.

B. Future Research

In the future, we plan to build on our contributions by

extending the framework and experimental evaluation. We

aim to include more representative and diverse environments

and robot models, and implement additional state-of-the-art

coordination algorithms. We also want to investigate the use

of local navigation methods which utilize human motion pre-

diction and provide more extensive experimental evaluation.

This will be focused on how local navigation methods can

be combined with more complex coordination algorithms and

be used in unstructured, human-shared environments.

VII. CONCLUSIONS

In this paper we make important initial steps towards ap-

plying methods for multi-robot coordination in unstructured

human-shared environments and identify the challenges in

making state-of-the-art methods human-aware. To address

these challenges we propose a software framework, based on

state-of-the-art robotics research tools, to develop, evaluate

and benchmark different types of multi-robot coordination

methods in unstructured, human-shared environments. We

use our framework to implement basic, well established

multi-robot coordination algorithms and provide a line of

experiments to test how they perform in those environments.

Our results show that we can quantify the influence of human

presence on the implemented algorithms and how basic

ways of making the methods human-aware can influence the

coordination performance.



REFERENCES

[1] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. S. Kumar, and S. Koenig,
“Lifelong multi-agent path finding in large-scale warehouses,” in
Proc. of Conf. on Artificial Intell. (AAAI), vol. 35, no. 13, 2021, pp.
11 272–11 281.

[2] S. Jeon, J. Lee, and J. Kim, “Multi-robot task allocation for real-time
hospital logistics,” in Proc. of the IEEE Conf. on Systems, Man, &
Cybernetics (SMC). IEEE, 2017, pp. 2465–2470.

[3] I. Draganjac, T. Petrovic, D. Miklic, Z. Kovavic, and J. Orsulic,
“Highly-scalable traffic management of autonomous industrial trans-
portation systems,” Robot. & Computer-Integr. Manuf., vol. 63, p.
101915, 2020.

[4] T. Morita, N. Kashiwagi, A. Yorozu, H. Suzuki, and T. Yamaguchi,
“Evaluation of a multi-robot cafe based on service quality dimensions,”
The Review of Socionetwork Strategies, vol. 14, pp. 55–76, 2020.

[5] R. Han, S. Chen, and Q. Hao, “Cooperative multi-robot naviga-
tion in dynamic environment with deep reinforcement learning,” in
Int. Conf. Robot. & Autom. (ICRA). IEEE, 2020, pp. 448–454.

[6] J. R. Bruce and M. M. Veloso, “Safe multirobot navigation within
dynamics constraints,” Proc. of IEEE, vol. 94, no. 7, pp. 1398–1411,
2006.

[7] B. Gopalakrishnan, A. K. Singh, M. Kaushik, K. M. Krishna, and
D. Manocha, “Prvo: Probabilistic reciprocal velocity obstacle for multi
robot navigation under uncertainty,” in Int. Conf. Intell. Robot. Sys.
(IROS). IEEE, 2017, pp. 1089–1096.

[8] M. Boldrer, A. Antonucci, P. Bevilacqua, L. Palopoli, and
D. Fontanelli, “Multi-agent navigation in human-shared environments:
A safe and socially-aware approach,” Robot. & Auton. Syst., vol. 149,
p. 103979, 2022.

[9] M. Čáp, P. Novák, A. Kleiner, and M. Selecký, “Prioritized planning
algorithms for trajectory coordination of multiple mobile robots,” IEEE
Trans. on Automation Science & Engineering, vol. 12, no. 3, pp. 835–
849, 2015.

[10] W. Hönig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian,
“Persistent & robust execution of MAPF schedules in warehouses,”
IEEE Robot. & Autom. Letters, vol. 4, no. 2, pp. 1125–1131, 2019.

[11] S. Varambally, J. Li, and S. Koenig, “Which MAPF model works best
for automated warehousing?” in Proc. of Int. Symp. on Comb. Search,
vol. 15, no. 1, 2022, pp. 190–198.

[12] F. Pecora, H. Andreasson, M. Mansouri, and V. Petkov, “A loosely-
coupled approach for multi-robot coordination, motion planning and
control,” in Proc. of Int. Conf. Autom. Plan. & Sched. (ICAPS), vol. 28,
2018, pp. 485–493.

[13] S. Schaefer, L. Palmieri, L. Heuer, R. Dillmann, S. Koenig, and
A. Kleiner, “A benchmark for multi-robot planning in realistic, com-
plex and cluttered environments,” in Int. Conf. Robot. & Autom.
(ICRA), 2023, pp. 9231–9237.

[14] M. Cirillo, F. Pecora, H. Andreasson, T. Uras, and S. Koenig, “Inte-
grated motion planning and coordination for industrial vehicles,” in
Proc. of Int. Conf. Autom. Plan. & Sched. (ICAPS), vol. 24, 2014, pp.
463–471.

[15] A. Mannucci, L. Pallottino, and F. Pecora, “Provably safe multi-robot
coordination with unreliable communication,” IEEE Robot. & Autom.
Letters, vol. 4, no. 4, pp. 3232–3239, 2019.

[16] M. Čáp, J. Gregoire, and E. Frazzoli, “Provably safe and deadlock-
free execution of multi-robot plans under delaying disturbances,” in
Int. Conf. Intell. Robot. Sys. (IROS), 2016, pp. 5113–5118.

[17] Y. Chen, U. Rosolia, and A. D. Ames, “Decentralized task and path
planning for multi-robot systems,” IEEE Robot. & Autom. Letters,
vol. 6, no. 3, pp. 4337–4344, 2021.

[18] H. Zhu, F. M. Claramunt, B. Brito, and J. Alonso-Mora, “Learning
interaction-aware trajectory predictions for decentralized multi-robot
motion planning in dynamic environments,” IEEE Robot. & Autom.
Letters, vol. 6, no. 2, pp. 2256–2263, 2021.

[19] Z. Talebpour and A. Martinoli, “Multi-robot coordination in dynamic
environments shared with humans,” in Int. Conf. Robot. & Autom.
(ICRA). IEEE, 2018, pp. 4593–4600.

[20] N. R. Sturtevant, “Benchmarks for grid-based pathfinding,” IEEE
Trans. Comp. Intell. & AI in Games, vol. 4, no. 2, pp. 144–148, 2012.

[21] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proc. of IEEE, vol. 94, no. 7,
pp. 1257–1270, 2006.

[22] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in
the wild,” Science Robotics, vol. 7, no. 66, p. eabm6074,
2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.abm6074

[23] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in Int. Conf. Intell. Robot. Sys.
(IROS), vol. 3, 2004, pp. 2149–2154 vol.3.

[24] S. Macenski, F. Martin, R. White, and J. Ginés Clavero, “The
Marathon 2: A navigation system,” in Int. Conf. Intell. Robot. Sys.
(IROS), 2020.

[25] A. Rudenko, T. P. Kucner, C. S. Swaminathan, R. T. Chadalavada,
K. O. Arras, and A. J. Lilienthal, “THÖR: Human-robot navigation
data collection and accurate motion trajectories dataset,” IEEE Robot.
& Autom. Letters, vol. 5, no. 2, pp. 676–682, 2020.

[26] “Open-RMF demo,” https://github.com/open-rmf/rmf demos,
accessed: 2023-05-27.

[27] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” J. of Basic Engin., vol. 82, no. 1, pp. 35–45, 03 1960.

[28] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo localiza-
tion: Efficient position estimation for mobile robots,” Aaai/iaai, vol.
1999, no. 343-349, pp. 2–2, 1999.

[29] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
Int. Conf. Robot. & Autom. (ICRA), 2016, pp. 1433–1440.

[30] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” Ann Arbor, vol.
1001, no. 48105, pp. 18–80, 2008.

[31] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Kumar et al., “Multi-agent pathfinding:
Definitions, variants, and benchmarks,” in Proc. of Int. Symp. on Comb.
Search, vol. 10, no. 1, 2019, pp. 151–158.

[32] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Art. Intell., vol. 219, pp.
40–66, 2015.

[33] W. Hönig, S. Kiesel, A. Tinka, J. Durham, and N. Ayanian, “Conflict-
based search with optimal task assignment,” in Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent
Systems, 2018.

[34] A. Mannucci, L. Pallottino, and F. Pecora, “On provably safe and live
multirobot coordination with online goal posting,” IEEE Trans. Robot.
Autom. (TRO), vol. 37, no. 6, pp. 1973–1991, 2021.

[35] “Turtlebot4 packages,” https://turtlebot.github.io/
turtlebot4-user-manual/software/turtlebot4 common.html, accessed:
2023-05-09.

[36] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Proc. of Int. Symp. on Comb. Search, vol. 5, no. 1, 2014,
pp. 19–27.

[37] G. Wagner and H. Choset, “M*: A complete multirobot path planning
algorithm with performance bounds,” in Int. Conf. Intell. Robot. Sys.
(IROS). IEEE, 2011, pp. 3260–3267.


	Introduction
	Related Work
	Framework
	Simulation
	Navigation
	Planning and Coordination

	Coordination Algorithms
	Evaluation
	Simulation Environments
	Experiments

	Results
	Discussion
	One-shot CBS
	Iterative CBS
	Continuous PBC

	Future Research

	Conclusions
	References

